Sunday, 21 July 2013

R.C Model Airplanes

R.C Model Airplanes

Source(www.google.com.pk)
The earliest examples of electronically guided model aircraft were hydrogen-filled model airships of the late 19th century. They were flown as a music hall act around theater auditoriums using a basic form of spark-emitted radio signal.[2] In the 1920s, the Royal Aircraft Establishment of Britain built and tested the pilotless Larynx, a monoplane with a 100-mile (160 km) range. It was not until the 1930s that the British came up with the Queen Bee, a gunnery target version of the de Havilland Tiger Moth, and similar target aircraft. Radio control systems for model aircraft were developed in the late 1940s and early 1950s by English enthusiasts such as Howard Boys, who patented his 'Galloping Ghost' system of proportional control and became a regular contributor to Aeromodeller on the topic.[3]
In the United States, two pioneers in the field of controlling model planes by radio were Ross Hull and Clinton DeSoto, officers of the American Radio Relay League. During 1937, these two men successfully built and flew several large R/C gliders in the first public demonstration of controlled flights, in the course of which their sailplanes made more than 100 flights. A scheduled R/C event at the 1937 National Aeromodeling Championships attracted six entrants: Patrick Sweeney, Walter Good, Elmer Wasman, Chester Lanzo, Leo Weiss and B. Shiffman, Lanzo winning with the lightest (6 pounds) and simplest model plane, although his flight was rather erratic and lasted only several minutes. Sweeney and Wasman both had extremely short (5-second) flights when their aircraft took off, climbed steeply, stalled and crashed. Sweeney, however, had the distinction of being the first person to attempt a R/C flight in a national contest. The other three entrants were not even able to take off, although Good, with his twin brother William, persisted with developing R/C systems, culminating in first placings in the 1940 US Nationals and again after the end of World War II, in 1947. Their historic R/C model airplane, which they named the “Guff,” was presented to the National Air and Space Museum in Washington, D.C., in May, 1960, where it can be seen today.[4]
Gliders are planes that do not typically have any type of propulsion. Unpowered glider flight must be sustained through exploitation of the natural lift produced from thermals or wind hitting a slope. Dynamic soaring is another popular way of providing energy to gliders that is becoming more and more common. However, even conventional slope soaring gliders are capable of achieving speeds comparable with similar sized powered craft. Gliders are typically partial to slow flying and have high aspect ratio, as well as very low wing loading (weight to wing area ratio). 3-channel gliders which use only rudder control for steering and dihedral or polyhedral wing shape to automatically counteract rolling are popular as training craft, due to their ability to fly very slowly and high tolerance to error.
Powered gliders have recently seen an increase in popularity. By combining the efficient wing size and wide speed envelope of a glider airframe with an electric motor, it is possible to achieve long flight times and high carrying capacity, as well as glide in any suitable location regardless of thermals or lift. A common method of maximising flight duration is to quickly fly a powered glider upwards to a chosen altitude and descending in an unpowered glide. Folding propellers which reduce drag (as well as the risk of breaking the propellor) are standard. Powered gliders built with stability in mind and capable of aerobatics, high speed flight and sustained vertical flight are classified as 'Hot-liners'. 'Warm-liners' are powered craft with similar abilities but less extreme thrust capability. Many powered beginner craft are based upon or considered borderline gliders.
To avoid ambiguity, unpowered gliders are typically referred to as 'slope soarers' or 'thermal soarers' respectively.
Racers are small propeller-driven aircraft that race around a 2, 3, or 4 pylon track. They tend to be hard to see and can often go over 240 km/h (150 mph), though some people do pylon races with much slower aircraft. Although several different types of aircraft are raced across the world, those flown primarily in the US are; Q500 (424 or ARPRA, and 428), and Q40. 424 is designed as a starting point into the world of pylon racing. Inexpensive (under $200 for the airframe) kits with wing areas of 3,200 square centimetres (500 sq in) are flown with .40 size engines that can be purchased for less than $100. The goal is for the planes to be not only inexpensive, but closely matched in performance. This places the emphasis on good piloting. APRA is a version of 424 with specific rules designed for consistency. 428 aircraft are similar to 424 in appearance. The difference is in engine performance and construction. The planes are primarily made of fiberglass with composites used at high load points. Wings are often hollow to save weight. (All aircraft must meet a minimum weight. A lighter wing moves more of the weight closer to the center of gravity. This requires less control deflection and its resulting drag to change the planes attitude.) They also use .40 cu in size engines but unlike 424 they are much more expensive. They have been designed to put out the maximum amount of power at a specific RPM using a specific fuel. Nelson manufactures the most predominantly used engine. Speeds are very fast in this class with planes capable of reaching 290 km/h (180 mph). Q40 is the highpoint of pylon racing, as their aircraft resemble full-size race planes. They are not limited to the simple shapes that Q500 planes are, which have much cleaner aerodynamics and less wing area. They use the same basic Nelson engine used in 428, but the engine is tuned to turn a much smaller prop at a much higher rpm. The planes accelerate much more slowly than 428, but their clean airframes allow them to reach higher speeds, and maintain them around the turns. These planes can fly in excess of 320 km/h (200 mph) on the course. Because of their limited wing area however, Q40 planes must fly a larger arc around the pylons to conserve energy. Although faster, they ultimately fly a larger course. Ironically the best times for a 10 lap 3 pylon Q40 race are very close to the same in 428.
3D flight is a type of flying in which model aircraft have a thrust-to-weight ratio of more than 1:1 (typically 1.5:1 or more), large control surfaces with extreme throws, low weight compared to other models of same size and relatively low wing loadings.
These elements allow for spectacular aerobatics such as hovering, 'harriers', torque rolling, blenders, rolling circles, and more; maneuvers that are performed below the stall speed of the model. The type of flying could be referred to as 'on the prop' as opposed to 'on the wing', which would describe more conventional flight patterns that make more use of the lifting surfaces of the plane.
3D has created a huge market for electric indoor 'profile' types similar to the Ikarus 'Shockflyers' designed to be able to fly inside a gym or outside in little wind. These generally make use of small brushless motors (often outrunners, but also geared inrunners) and lithium polymer batteries. There are also many larger 3D designs designed for two and four stroke glow engines, two stroke gas engines and large electric power systems. The most common and which most pilots describe as the best size of a 3D plane is a 40%/150cc class.

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

R.C Model Airplanes

No comments:

Post a Comment